On the bench: Zenith K731 (7M07)

This poor radio has seen better days and doesn’t quite live up to modern safety standards with regards to mains electricity.  But the look is great and there’s generous space inside for a small tube amp. Because the enclosure must be allowed to vent for the tube amp to dissipate heat, the speaker (which I also plan to modernize) will be a small challenge. This is a great candidate for a DIY tube radio restoration.

Probable features:

  • 3-5W single channel output
  • Bluetooth connectivity
  • Aux input (analog)
  • Volume control
  • EQ (either treble/bass knobs or loudness contour)
  • Safety!


DIY tube RIAA calculator sheet

All-In-One RIAA Calculator

Here’s a spreadsheet I built for calculating RIAA values in two stage tube phono preamps. When comparing results to other published designs using the same filter network, everything looks correct (within a few percent due to estimation of Rp). I used this sheet for El Matématico.

If you want to estimate values for something like a CCS loaded stage, you can set Rload on the appropriate stage to 1M or thereabouts. If you’re looking at using a cascode, mu follower, SRPP, etc 1st stage, you’ll need to make sure the Zout figure the sheet uses (cell I6)  reflects the Zout of the topology because it is used to calculate R1. Same thing goes for cell I3 (Miller capacitance of 2nd stage) if you use a gain stage after the filter that affects this (cascode, grounded grid, etc).

Go build a phono preamp!

“All-tube” MC phono preamp (continued)

Not long ago I wrote a short post about MC carts and the noise contribution of tubes when amplifying such tiny signals. I focused on step-up transformers as the solution to noiseless amplification, but there is another approach.  If you don’t like solid state, stop reading. Ok, now that you stopped reading and checked out the going prices for step-up transformers, you’re back. Good. Don’t worry, this approach uses the tubeyist solid-state device: the JFET.

A cascode is a compound amplifier in a totem pole arrangement. Here’s a great explanation by Valve Wizard Merlin. This allows you to achieve huge amounts of voltage amplification with fairly economic current usage and without coupling capacitors or multiple phase inversions. The driving force in this arrangement is the transconductance of the lower tube. The lower tube and upper tube do not need to be the same, nor do they even need to be the same type of device.

JFETs (junction gate field effect transistors) are voltage controlled devices, just like tubes. In fact, they bias in a very similar way: Rsource in the above raises the n-type JFET’s source voltage above the gate, similar to the way a cathode resistor in a grounded cathode amplifier raises the cathode above the grid. On the other hand, even the lowliest JFETs have a higher transconductance (gm) than the mightiest small-signal tubes. Icing on the cake is that JFETs, properly chosen and cared for, are lower noise devices. As such, they make a great lower device in a hybrid cascode.

The overall gain of a cascode simplifies to approximately:

gm(lower) * Rload

This equation is a simplified expression of the total gain of both devices:

[gm * (Rp + Rload) / (Mu + 1)] * [(Mu +1) * Rload / (Rp + Rload)]

AKA [JFET gm * load divided down at tube’s cathode] * [grounded grid gain of tube]

Rp and Mu are characteristics of the tube upper device. The choice of upper device affects how much of the voltage gain is performed by the JFET by affecting the load it sees. A high Mu and low Rp upper tube (i.e. high transconductance) presents a lower load as divided down at its cathode, thus less voltage amplification by the JFET (and more voltage amplification made up by the tube due to the higher Mu). A low transconductance upper tube does the opposite. But regardless of the tube (assuming an appropriately sized Rload), the overall gain remains the same: ultimately the transconductance of the JFET multiplied by the load on the upper tube.

So where’s this headed? Obviously there’s a full design coming to try out this idea, but the takeaway is that a hybrid cascode is potentially a great way to step up the tiny signals from a moving coil cartridge with very low noise and hand the now-larger signal off to a tube amplification stage without multiple supply voltages, coupling caps, or an expensive step up transformer.

The catch? Cascodes have poor power supply noise rejection and a fairly high output impedance. But there are ways to minimize these factors, too.

Further recommended reading: 1, 2, 3, 4

Coming soon to a workbench near you…

In a world where near-field and headphone listening has become an unstoppable force. Where every DIY builder is bored to death of rational and safe two-stage, single-ended triode designs. Where power supplies have become an afterthought and parts values are just plugged and chugged. Prepare your butt for a new madness. Prepare it for La Luciérnaga…


Note db scale for the predicted frequency response graph: +/- 1 dB from 40-20khz. If that’s not good enough, I’ll show you how to make it even better. There’s mucho tube math coming your way, amigo.

Here’s the worksheet I used to create the above:


Letters to WTF: All-tube MC phono preamp?

Why not build an all-tube MC phono preamp?
I haven’t built an all-tube MC phono preamp.  I build MM stages with the assumption that MC users will use step up transformers. Generally, its much easier to keep the whole thing quiet that way. This is a simplified explanation, but I hope it gets the general idea (SNR) across:
Tubes impart noise in a few ways but they’re all usually tiny.  MC carts need around 60-70db of gain to bring them up close to line level.  This is multiplying the MC signal from the cart by 1000-3000x before it gets to your amp. In contrast, a MM cart usually needs 40-50db, which is an amplification of 100-300x.**
The more tubes used, the more very tiny sources of noise get introduced.  Although the noises are tiny, they are amplified by the preamp, just like the signal. So the more gain required to get the signal to a desired listening level, the closer the tiny noises get to being audible as well.  Several stages of tubes for a very large amount of gain can lead to unwanted noise for this reason (guitar amps and phono preamps are both good examples of this).
The step up transformer cannot practically do more than about 20db-25db of gain without having some undesired consequences, but they don’t have ‘moving parts’ and are very good at rejecting noise/hum.  The 25db of gain from a transformer is enough to lower the tube gain needed from 3000x (70db) to 175x (45db), meaning any noise from the tubes is amplified much less. It’s kind of like giving the tube part of the preamp a head start in the race against noise.
So that’s why I haven’t built a MC phono preamplifier. If I were to build one, I’d most likely add step up transformers to a MM preamp like the El Matematico or similar.  To me, this is the most practical approach with the highest likelihood of success.
**At the risk of muddying the waters, phono preamps actually need about 20db more than the numbers mentioned here but this is then attenuated by the RIAA correction filter to result in ~40db or ~60db net gain, MM and MC respectively.

New Page: Shunt Regulators


I’ve been doing some reading on tubes in shunt regulator power supplies lately (lots of great articles on TubeCAD including this one).  I’m planning to incorporate one in an upcoming build.  In operation, this isn’t too different from the VR regulator power supply in my Matemático Phono Preamp, but a shunt regulator with a triode would have an adjustable output and might afford even better ripple rejection.

My recent series regulator project is another example of power supply regulation.

Click here to see the new page on shunt regulators.

Something for beginners

Pete Millett’s Starving Student was one of the first amps I ever built completely from scratch. Unfortunately, the 19J6 tubes have become rare (or at least no longer dirt cheap) due to all the bright eyed DIYers scooping them up to build amps. I think the world needs another <50V tube amp for beginners, so I’m designing one. Like the original, it’s an oddball tube with a MOSFET buffer and an off-the-shelf power brick (same brick, in fact).

Millett is one of my personal tube heroes. This is a tribute.  Full write up coming soon (and parts values subject to change once tested).