DIY amplifier top plate easel

I wanted a better way to wire my amps and had been lusting after Decware’s amazing assembly room for a while.  While I can’t afford the custom extrusions and equipment that Decware has, I can get creative with common materials.  I decided to try a simple easel based on a couple of rails of t track and some standard angle and rod extrusion.

The basis of my easel is two 2ft sections of t track. Finding a 4ft section with bolts and knobs on sale at Rockler was what pushed me over the edge to build this daydream. The t track is 3/4″ wide by 3/8″ deep. Rather than trying to route a channel in a thick board, I sandwiched the t track in scrap with 3/4″ thick scrap under the track and 3/8″ to form the outside. These were glued and clamped face down so that I could be sure the t track would be flush with the top edge. 

My bench is cantilevered from basement joists with 2×6 vertical supports. I ran a 1/2 aluminum rod between the supports to provide lateral movement and adjustment to the t track rails. The rails simply have a 1/2″ hole through which the rod passes. By mounting the rod 12″ from the surface, the 24″ rails give a 30 degree angle. This leaves plenty of clearance for transformers and is comfortable to work on while standing or sitting). I purchased some 1/2″ washers and collars, but they may not really be necessary (I’ll find a use eventually). 

My horizontal ledges are 1/2″ by 3/4″ aluminum angle (3/4″ side is flat against the t track rails). I used self adhesive cork sheet to protect plates in the easel from scratching on the support. Depending on your knobs or wing nuts, you may have to trim some of the horizontal rails so that they can be completely tightened. I cut my rails to fit a 18″ wide top plate, but aluminum extrusion is cheap if I ever want to build something wider. 

All in all, this is a handy and relatively simple addition to my tube amp building bench. And it is a lot cheaper than custom extrusions or lab fixtures!

 

New page on headphone output stages

parafeed

I posted a new page on power output stages with a headphone focus (though it can be applied to speakers as well). My aim is to eventually try all the variants.  Between the Estudiante MOSFET hybrid, Papa Rusa parafeed SE, Bad Hombre differential, and Luciernaga series-feed SE, I’m part way there. Been working on ideas for an all-tube OTL lately.  Hopefully I’ll tick that box soon!

Another Muchedumbre lives

I finished another Muchedumbre build with some slight variations.  This has two outputs and two inputs (easily switchable back to the 1+3 arrangement).  The power supply CLC filter uses all motor run caps instead of a mix of motor run and electrolytic. Other than these small tweaks, it is built as designed.

The wood apron is a very nice piece of walnut with a lot of prominent grain motion and color variation and the panel is inset rather than sitting on separate interior spacer boards. This is going to live a very happy life in Madison, WI.

USB interfaces for DIY audio measurements

USB interfaces

Looking for a better way to measure my line-level and amplifier projects, I decided to investigate some USB prosumer interfaces. Rather than options like the QA401 with its required software suite, the Keithley 2015 with uninspiring THD specs, or HP 8903 with a footprint and compatibility penalty, I wanted something small, flexible, and with performance good enough for tube audio. A USB audio interface will require voltage dividers for many measurements (whereas the lab equipment usually allows a higher Vrms input), but recording interfaces are inexpensive and flexible with software. Also, I don’t have the play money for an AP or dScope rig.

RMAA interfaces screenshot

These were all measured back to back on the same laptop with latest drivers and the same unbalanced cables. The same -1db level was used for all interfaces to get a relative distortion/noise baseline. RMAA doesn’t necessarily give an absolute and repeatable spec, but it is good enough for relative comparisons. All interfaces were measured several times; the displayed specs capture the “average” performance (calculated by eye).

  • The MBox 3rd Gen is an obvious winner in just about every regard. It was also a much more expensive interface when it was new.  MBoxes are no longer produced, but used interfaces aren’t difficult to find. This would be a decent basis for THD measurements of amplifiers (my intended use).
  • The M-Track 2×2 did rather well (as much as I hate to admit it) but doesn’t have two identical channels for this kind of thing (one TRS and one combo jack with mic pre). Wouldn’t recommend it for measurements for that reason.
  • The old Fast Track Duo (Avid branded bu made by M-Audio) blew chunks. Can’t rule out that my unit has some kind of issue.
  • The AudioBox USB looks good but there is a cross-talk issue. Possibly grounding with the unbalanced cables. The knobs are also too fiddly for fine adjustment in my opinion.
  • I really wanted the iConnectivity to perform the best here. In my opinion it’s the nicest piece of hardware. Unfortunately, the relative measurements don’t make it the best choice. It can be run from a 9V supply rather than the USB bus though and I may try that to see if there’s any improvement. No supply handy for this test.
  • The AudioBox 44VSL does pretty well (this is what I had been using for measurements). It also requires a 12V external supply and is a larger 4 mic pre interface, making it a little less convenient for a bench-top test setup. The 22VSL is smaller and may measure just as well (don’t have one to play with).

Here’s after some fine tuning the MBox levels in REW (sampling rate set to 96khz):

mbox-96k.png

This is close to the -110db THD Avid spec’d. All in all, I think I can live with the MBox for a while for my testing. Although all the caveats of RMAA and testing conditions/methodology apply, performance is on par with some specs I’ve seen on the cheaper audio analyzers and definitely a cut above the other USB interfaces here.

Link to RMAA software

Link to REW software